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Introduction

Colorectal cancer is among the top three 
malignancies in Taiwan in terms of incidence and 
mortality. Genetic factors and diet are the main 
causes. Daily dietary intake impacts on the health 
of individuals. Similarly, the growth environment 
affects the proliferation and signaling activities 
of cells. Most of the current biomedical research 
uses cell lines as models. However, cells grown in 
different culture environments may have various 
responses to the same stimulus. In 2019, Mikael 
demonstrated that the composition of cell culture 
medium greatly affects cell growth and sensitivity 

to selenium cytotoxicity. In another study, changes 
in phenotype of A549 cells maintained under 
different culture conditions were noted [1].

Cellular senescence is an irreversible state in 
which cells stop growing or there is cell cycle arrest. 
American scientist Leonard Hayflick proposed 
the "Hayflick Limit" for human cell growth. 
Cultured cells stop dividing after an average of 
50 cumulative population doublings (CPDs). 
Senescence-related cellular stress includes oxidative 
stress, mitochondrial dysfunction, irradiation, 
and chemotherapeutic drugs. Expression of P53 
is   pivotal   for the establishment of senescence, 
mainly following P53 activation through intrinsic 
DNA damage response (DDR) [2,3]. Initiation of 
cellular senescence not only involves P53/P21, 
but also P16/pRB signaling activation, usually in 
response to an endogenous factor, such as shortening 
telomeres, cell proliferation-related signals, or 
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and stimulation of colorectal cancer cells in different growth environments. Specifically, we observed 
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DMEM (SW480/DMEM). The expressions of P21 and P16, the regulatory proteins related to senescence 
and cell cycle, were significantly induced in SW480/DMEM. However, the expression of P53 was 
stable in SW480/L-15 and SW480/DMEM. The cell senescence-associated β-galactosidase activity was 
undetectable in SW480/L-15 and SW480/DMEM. These results showed that different growth conditions 
affect the morphology and proliferation of SW480 cells, not through cellular senescence but, perhaps, 
via cell cycle alteration or other signaling pathway. 
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activation of tumor suppressor molecules [4-10]. In 
addition to the regulation of cellular senescence, 
the expression of P53 downstream mediator P21 
leads to transient cell cycle arrest [3,11,12]. P21 binds 
to and inhibits the activity of CDK2 or CDK4 cell 
cycle regulatory complexes and, thus, functions as a 
regulator of cell cycle progression in G1 phase. P16 
is also known to function as an inhibitor of CDK4 
kinase to modulate cellular senescence and cell 
cycle arrest in response to a variety of stress stimuli 

[13,14]. The characteristic phenotype of cancer cells 
includes continuous cell proliferation signaling, cell 
homeostasis, and metabolism. Therefore, senescence 
may be a powerful physiological defense which can 
antagonize tumor activity, thereby counteracting 
carcinogenesis and revealing its potential for use in 
cancer therapy [3,4,8].

We cultured SW480 colorectal cancer cells 
in Leibovitz L-15 (L-15) medium according to 
the American Type Culture Collection (ATCC) 
suggested cell culture formula. However, laboratories 
also use other media such as Dulbecco’s modified 
Eagle’s medium (DMEM), DMEM/F12, and RPMI 
to culture SW480 cells [1,15-22]. Different nutrients 
provide different cell growth environments to trigger 
different cellular activities. Therefore, it is interesting 
to observe whether the cellular responses of SW480 
colorectal cancer cells cultured in L-15 medium and 
DMEM differ.

Materials and Methods

Cell culture and cell counting
The colorectal cancer cell line SW480 (CCL-

228TM) was cultured in L-15 medium, based 
on ATCC (Manassas, VA, USA) suggestions, or 
DMEM. To both media were added 10% fetal 
bovine serum (FBS) at 5% CO2 and 37°C. The 
growth of cultured cells was observed and images 
were captured with Olympus biological system 
microscope CX-41 under visible light. Cell counts 
were obtained following trypan blue staining.

Western blot analysis
SW480 cells were cultured with L-15 medium 

or DMEM and protein lysates were collected. Cells 
were washed twice with PBS and lysed in sample 

buffer, then boiled at 95°C for 10 min. Total proteins 
were separated by SDS-PAGE and transferred to a 
PVDF membrane. Then, the membrane was blocked 
and incubated with indicated antibodies, followed by 
detection using HRP chemiluminescence method, 
during which the membranes were exposed to LAS-
3000 (Fujifilm, Tokyo, Japan).

Senescence-associated β-galactosidase staining
SW480 cells were seeded onto 3.5cm dish with 

L-15 medium or DMEM and transfected with or 
without CMV-LacZ plasmid for 72hrs. Cells were 
washed with PBS and fixed with 1ml fixation buffer 
at room temperature for 10 min. Then, cells were 
stained with freshly prepared SA-β-Gal staining 
solution after washing with PBS, based on the 
protocol provided by the manufacturer (Beta-
Galactosidase Staining Kit, Clontech #631780). 
Stained cell images were observed and captured 
with a 400X microscope.

Statistical analysis
Statistical analyses were performed using Student 

t-test with more than three independent experiments. 
Means are reported, with significance level set at p 
< 0.05 for all analyses.

Results

Differences in cell growth and morphology between 
media

To observe the effects of different growth 
conditions on colorectal cancer cells, we cultured 
SW480 colorectal cancer cells in L-15 medium or 
DMEM. Table 1 shows the various components 
required for cell growth in L-15 medium and DMEM. 
SW480 cells were cultured for 10 generations and cell 
growth density was recorded at 0, 24, 48, 72 and 96 
hours after cell subculture, respectively. As shown in 
Figure 1, cell growth density of SW480 cells cultured 
in DMEM (SW480/DMEM) was significantly higher 
than that of SW480 cells cultured in L-15 medium 
(SW480/L-15) at 96 hours.

Changes in cell phenotypes were observed after 
10 generations. As shown in Figure 2, SW480/L-15 
cells were flatter and larger than SW480/DMEM 
cells. However, the growth rate of SW480/L-15 
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was lower than that of SW480/DMEM. This may 
have been due to cellular senescence or cell cycle 
alteration. The most obvious senescence biomarkers 
are growth arrest and progressive morphological 

changes.

Inductions of P21 and P16 are independent of 
P53 in DMEM

Table 1. Contents of L-15 medium and DMEM

L-15 DMEM (High Glucose)

CaCl2 (anhydrous)

KH2PO
KCl

MgCl2 (anhydrous)
MgSO4 (anhydrous)

Na2HPO4 (anhydrous)
NaCl

CaCl2 (anhydrous)

KCl
Fe(NO3).9H2O

MgSO4 (anhydrous)
NaCl

L-Arginine HCl
NaH2PO4.H2O

L-Alanine
L-Arginine

L-Cysteine
L-Asparagine (anhydrous)

L-Glutamine
Glycine

L-Isoleucine
L-Histidine FB

L-Cysteine 2HCl
L-Glutamine

L-Isoleucine
L-Histidine HCl.H2O

L-Leucine
L-Lysine HCl

L-Phenylalanine
L-Methionine

L-Leucine
L-Lysine

L-Phenylalanine
L-Methionine

L-Serine
L-Threonine

L-Trysine
L-Tryptophan

L-Serine
L-Threonine

L-Trysine 2Na.2H2O
L-Tryptophan

L-Valine
D-Ca Pantothenate

Folic Acid
Choline Chloride

L-Valine
D-Ca Pantothenate

Folic Acid
Choline Chloride

Myo-Inositol
Niacinamide

Riboflavin-5PO4-Na
Pyridoxine HCl

Myo-Inositol
Niacinamide

Riboflavin
Pyridoxine HCl

Thiamine HCl
D-Glucose

Phenol Red (Sodium)
HEPES

Thiamine PO4-Cl-2H2O

Phenol Red (Sodium)
D(+)Glalactose

Sodium Pyruvate

Glycine
NaHCO3

Sodium Pyruvate

mg/L
140

60
400

93.68
97.67

190
8000

225
500

120
250

300
200

125
250

125
75

125
75

200
300

300
20

100
1

1
1

2
1

0.1
1

1.1

10.65
900

550

mmol/L
1.2615

0.4409
5.3655

0.9839
0.8112

1.3384
136.8925

2.5255
2.87

0.99
1.89

2.0527
2.6642

0.9529
1.611

0.95
0.51

0.7567
0.503

1.9031
2.5185

1.6556
0.0979

0.8536
0.0021

0.0023
0.0072

0.0111
0.0082

0.0002
0.0049

0.0026

0.0283
4.9956

4.9982

mg/L
200

400
0.1

97.67
6400

84
125

62.57
584

104.8
42

104.8
146

66
30

42
95

103.79
16

93.6
4

4
4

7
4

0.4
4

4
4500

15
0

0

30
3700

mmol/L
1.8021

5.3333
0.0002

0.8139
110.345

0.3981
0.9058

0.2013
3.996

0.8015
0.2004

0.8015
0.7978

0.3995
0.2013

0.3997
0.7983

0.3985
0.0783

0.8034
0.0084

0.0091
0.0286

0.0389
0.0328

0.0011
0.0195

0.0119
24.9978

0.0399
0

0

0.4
44.04762
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As the critical marker of cellular senescence, 
P21, the downstream target of P53, has been shown 
to initiate cellular senescence. Another major 
pathway for senescence is P16/pRB signaling.  
Both P16 and P21 are cyclin-dependent kinase 
inhibitors that negatively regulate the cell cycle. We 

used Western blot to detect the expressions of P53, 
P21, and P16 in SW480/L-15 and SW480/DMEM. 
As shown in Figure 3, expressions of P21 and P16 
were induced in SW480/DMEM. However, P21 and 
P16 protein expressions were P53-independent, as 
P53 was expressed stably and P53 expressions did 

Figure 1.  Differences in cell growth density in two media.
SW480 colon cancer cells (1.5 x 105) were seeded onto 3.5cm dish and incubated with L-15 medium or 
DMEM. Cells were observed and recorded at different times (0hr, 24hrs, 48hrs, 72hrs, 96hrs) under  200X
microscope. The growth density of SW480/L-15 was lower than that of SW480/DMEM.

Figure 2.  Differences in cell growth rate and morphology between the two media.
(A) 3 x 105 SW480 colon cancer cells were seeded onto 6cm dish and incubated with L-15 medium or 
DMEM. Quantitative results are the numbers of SW480 cells in different media at different times (24hrs,
48hrs, 72hrs, 96hrs). (B) Cells cultured in L-15 medium or DMEM at 96hrs were observed under a 
microscope (200X). SW480/L-15 cells were large and flat (red arrows).
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not change significantly in SW480/L-15 or SW480/
DMEM.

Neither medium triggers cell senescence-associated 
β-galactosidase activity

Currently, a widely used senescence marker is 
senescence-associated β-galactosidase (SA-β-gal) 
activity. Therefore, we stained SW480/L-15 cells 
with SAβ-gal to detect whether cellular senescence 
is initiated in different culture environments. All 
SW480 cells were continuously cultured in L-15 
medium or DMEM and senescence was detected 
by β-galactosidase activity at the 20th passage. The 
plasmid CMV-lacZ was transfected into SW480/
L-15 or SW480/DMEM by lipofectamine plus as a 

positive control for β-galactosidase activity. After 
48 hours of incubation, the cells were fixed and SA-
β-gal activity was detected. The positive control 
transfected CMV-lacZ turned blue due to the 
presence of β-galactosidase activity, but SW480/
DMEM and SW480/L-15 did not, which means that 
no cellular senescence-associated β-galactosidase 
was detected in either culture environment.

Discussion

In this study, the phenotype of SW480 colorectal 
cancer cells was affected under different culture 
conditions. We found that culture condition 
influences cellular morphology and proliferation. 
SW480 cells were larger and f latter with lower 
growth rate in L15 medium compared with SW480 
cells in DMEM. P53-independent expressions of 
P21 and P16 were significantly induced in SW480/
DMEM. Senescence-associated β-galactosidase 
activity was undetectable in both SW480/L-15 and 
SW480/DMEM.

Figure 3.  DMEM induces P21 and P16 expressions
independent of P53.
SW480 cell lysates were prepared in different
passages (P5, P10, P15) and protein expressions
were analyzed by Western blot with the 
indicated P21 or P16 antibodies. (A) P21 
protein expressions   in SW480/L-15 and 
SW480/DMEM. (B) P16 protein expressions 
in SW480/L-15 and SW480/DMEM. All protein
expressions of P21 and P16 were inducible
in SW480/DMEM compared with L-15. (C)
Cell lysates were prepared in different 
passages (P5, P20, P30, P40) and protein
expressions were analyzed by Western blot 
with the indicated P53 antibodies. There were
no significant differences in protein expression
of P53 between SW480/L-15 and SW480/
DMEM. (L: L-15, D: DMEM).

Figure 4.  Senescence-associated β-galactosidase
activity was negative in SW480/L-15 and 
SW480/DMEM.
Ten generations of SW480 cells were cultured
in L-15 medium or DMEM medium and cellular
senescence was detected by β-galactosidase
activity stain. CMV-lacZ was transfected into
SW480/L-15 or SW480/DMEM as positive 
control for β-galactosidase activity. After 24hr
incubation, cells were fixed and SA-β-gal
activity was detected. Shown here is a
representative image following SA-β-gal
staining  (magnification 400X). (NT: non-
transfection)
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Although changes in cell morphology and low 
growth rate are characteristic of cellular senescence, 
SA-β-gal activity was negative under both culture 
conditions. Most importantly, expression of cell 
senescence regulatory proteins P21 and P16 did not 
increase in the larger, flatter, and slower growing 
SW480/L-15 cells. In contrast, induction of P21 and 
P16 proteins was observed in the rapidly growing 
SW480/DMEM group. P21 and P16 are not only 
senescence regulatory proteins, but also cell cycle 
regulatory proteins. P21 binds to and inhibits the 
activity of CDK2 or CDK4 complexes and P16 
inhibits CDK4 kinase [6,13,23]. The expressions of these 
cell cycle regulatory proteins may inhibit cell cycle 
progression and cause cell cycle arrest. However, 
we did not observe growth retardation or cell cycle 
arrest in SW480/DMEM cells expressing P21 and 
P16 proteins. Growth was faster than for SW480/L-15 
cells, which were not induced to express P21 or P16 
proteins. 

P21 was first identified as a downstream target of 
P53 and an essential mediator of P53-dependent cell-
cycle arrest. Subsequent evidence has demonstrated 
that the activity of P21 does not necessarily require 
the participation of P53. P21 acts either as a tumor 
suppressor or as an oncogene depending on whether 
P53 status is gain of function or loss of function. 
P21 also has a multifunctional role in cell biological 
activity, including cell proliferation, cell migration, 
apoptosis, transcription regulation, DNA repair,  
cell autophagy, and cell senescence [12,24-27]. To date, 
the functional role of P21 depends on cell type, 
environmental stimulation, subcellular localization, 
post-translational modification regulation, and even 
p53 status.

The proliferation of SW480/DMEM cells, in 
which the expressions of P21 and P16 were induced, 
was relatively fast. In contrast, there were only 
weak expressions of P21 and P16 in slow-growing 
SW480/L-15 cells. To clarify this, we compared 
the differences in the components of L-15 and 
DMEM. As shown in Table 1, the DMEM formula 
contains glucose, while the L-15 formula does not. 
This result is similar to our previous findings. P16 
protein expression in and growth rate of SW480 
cells increase in the presence of high concentration 
of glucose [28]. A previous study has shown that 

MCF7 breast cancer cells cultured in low-glucose 
medium enter senescence, inhibiting their growth  

[29].
Based on our results, P21 and P16 play different 

roles in regulating cell proliferation. Understanding 
their detailed regulatory mechanisms requires a more 
rigorous experimental design. Most importantly, 
the cell culture environment biologically stimulates 
the cells, which in turn affects cell proliferation and 
biological activity. This leads to different biological 
responses of the same cells to different culture 
environments. As cell models are widely used in 
experimental research in many life science fields, 
our findings provide scientific experimental evidence 
and a  sufficient reference for research design and 
the impact of comparative analysis.
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